0vββ – Decay: Inter-frontier Implications

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

My pronouns: he/him/his

Science

MeToo

Family

Friends

DBD Workshop, Hawaii December 2, 2023

Thanks !

- Alan Poon & DBD 23 Workshop
 organizers
- Osaka University for making my participation possible
- Emi Matsuda
- Darrel Ramsey-Musolf

T. D. Lee Institute / Shanghai Jiao Tong U.

Goals for This Talk

- Encourage the community to adopt a broader framing for the scientific significance of the *0vββ* decay "campaign"
- Highlight the *θvββ* decay inter-frontier connections

Outline

- I. Scientific Motivation
- II. Inter-frontier Connections
- III. High-scale LNV
- IV. TeV-Scale LNV
- V. GeV and Below-Scale LNV <
- VI. Conclusions

Time permitting

I. Scientific Motivation

Why pursue *0vββ* - decay ?

- The conventional question:
 - What is the nature of the neutrino ?

Why pursue *0vββ* - decay ?

- The conventional question:
 - What is the nature of the neutrino ?
- The deeper questions:

- Is there BSM lepton number violation ?
- If so, what is the LNV mass scale ?
- Does LNV undergird the generation of m_{ν} and the matter-antimatter asymmetry? ₈

SM: B+L Not Conserved

B+L Anomaly

SM B+L Violation & Sphalerons

B+L Anomaly

10

SM B+L Violation & Sphalerons

Lepton Number Violation

- The "known" Standard Model LNV mass scale is ~ 10 TeV
- Are there additional LNV dynamics ? If so what is the associated mass scale ?

LNV Physics: Where Does it Live ?

Is the BSM LNV scale (associated with m_v) far above E_{WS} ? Near E_{WS} ? Well below E_{WS} ?

13

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Lepton Number: v Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature, A
- Key ingredient for standard baryogenesis via leptogenesis

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

Impact of observation

- Total lepton number not
 conserved at classical level
- New mass scale in nature, A
- Key ingredient for standard baryogenesis via leptogenesis

II. Inter-frontier Connections

Fermion Masses & Baryon Asymmetry

Neutrino Mass & Cosmology

Matter Power Spectrum

Neutrino Free Streaming

K. Abazajian ACFI neutrino mass workshop

Gravitational Waves

Phase transition associated with spontaneous LNV → non-astrophysical GW source

Nuc Phys: *0vββ*-Decay & LNV Mass Scale

III. High-Scale LNV

The "Standard Mechanism"

LNV Mass Scale & *0vββ*-Decay

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10¹² – 10¹⁵ GeV
- 3 light Majorana neutrinos mediate decay process

High Scale LNV & Leptogenesis

Σm_{v} from Cosmo: $\partial v \beta \beta$ -Decay Implications

IV. TeV-Scale LNV

LNV Mass Scale & Ovßß-Decay

33

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but *0vββ*-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Low Scale LNV & Leptogenesis

Leptogenesis & TeV Scale LNV: Example

The "O2 Model": similar ingredients as in scotogenic neutrino mass models (but no Z_2 symmetry)

$$\mathcal{L}_{\mathrm{INT}} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \mathrm{H.c.}$$

Y_{B-L} survives

J. Harz, MJRM, T. Shen, S. Urrutia-Quiroga '21

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

TeV-Scale LNV: lepto, *0νββ***-Decay & Colliders**

The "O2 Model": similar ingredients as in scotogenic neutrino mass models (but no Z_2 symmetry)

$$\mathcal{L}_{\text{INT}} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \text{H.c.}$$

$$m_{N0} = 10^{10} \text{ GeV}, \epsilon = 1$$

$$10^{-1} \qquad Y_{B-L} \text{ washed out}$$

$$10^{-2} \qquad Y_{B-L} \text{ washed out}$$

$$10^{-3} \qquad Y_B < Y_B^{(\text{obs})}$$

$$10^{-4} \qquad 10^{-5}$$

$$10^{-6} \qquad 10^{-7} \qquad y_B^{-1} \text{ y}^{-5} \text{ y}^{-5}$$

(1, 2, 1/2)

(1, 0, 0)

S:

F:

Comparing *θvββ*-decay, collider, & cosmo

Y_{B-L} survives

J. Harz, MJRM, T. Shen, S. Urrutia-Quiroga '21

Majorana

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Σm_{v} from Cosmo: $\partial v \beta \beta$ -Decay Implications

Minimal LR Symmetric Model: 0vββ-Decay

Long range chiral enhancement

Thanks! Juan Carlos Vasquez

Minimal LR Symmetric Model: 0vββ-Decay

Long range chiral enhancement

Thanks! Juan Carlos Vasquez

TeV-Scale LNV: $0\nu\beta\beta$ -Decay & Σm_{ν}

TeV-Scale LNV: $0\nu\beta\beta$ -Decay & Σm_{ν}

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

Spontaneous LNV: Higgs, GW, Collider

LNV Scalar Field & GW

Phase transition associated with spontaneous LNV → non-astrophysical GW source

LNV Scalar Field & GW

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

BSM LNV: Questions

- Are there additional sources of LNV at the classical (Lagrangian) level?
- If so, what is the associated LNV mass scale ?
- What is the sensitivity of ton-scale *0vββ*-decay searches under various LNV scenarios ?
- What are the inter-frontier implications?

LNV: Scalar Fields & m_v

 $\partial \nu \beta \beta$ Decay, PV e⁻e⁻ \rightarrow e⁻e⁻, e⁺e⁻ \rightarrow e⁺e⁻ & pp collisions

V. GeV- and Below-Scale LNV

LNV Mass Scale & *0vββ*-Decay

More Than 3 Light Neutrinos: MeV-GeV

mLRSM

Simplified Model

J. De Vries, G. Li, MJRM, J. C. Vasquez '22

G. Li, MJRM, S. Su, J.C. Vasquez '22

56

Lepton Collider Probes

 $e^+ e^- \rightarrow Z^0 \rightarrow N N$ vs $e^+ e^- \rightarrow Z^0 \rightarrow N \overline{N}$

Lepton FB Asymmetry

A_{FB} : vanish for Majorana N

M. Drewes 2210.17110 (mini-review) Blondel, de Gouvea, Kayser 2105.06576

N Polarization

VI. Conclusions

- The observation of *θvββ*-decay would imply the existence of BSM LNV that could hold the keys to answering fundamental questions: origin of m_v & matter antimatter asymmetry.
- If BSM LNV exists, we don't know the associated mass scale
- Ton-scale *θvββ*-decay searches provide a powerful probe of LNV at all scales, with broader implications for our understanding of physics at the cosmic and high energy frontiers

Back Up Slides

Neutrino Oscillation Fits

NuFIT: 2111.03086

3 active light neutrinos

					/
	NuFIT 1.0	NuFIT 2.0	NuFIT 3.0	NuFIT 4.0	NuFIT 5.1
θ_{12}	15%	14%	14%	14%	14%
θ_{13}	30%	15%	11%	8.9%	9.0%
θ_{23}	43%	32%	32%	27%	27%
Δm_{21}^2	14%	14%	14%	16%	16%
$\left \Delta m_{3\ell}^2\right $	17%	11%	9%	7.8%	6.7% [6.5%]
δ_{CP}	100%	100%	100%	100% [92%]	100% [83%]
$\Delta \chi^2_{\rm IO-NO}$	± 0.5	-0.97	+0.83	+4.7 [+9.3]	+2.6 [+7.0]
					· · · · · · · · · · · · · · · · · · ·

Minimal LR Symmetric Model: 0vββ-Decay

