CPV & Electroweak Baryogensis

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

My pronouns: he/him/his # MeToo

FIND Workshop USTC, August 26, 2023

- The experimental discovery of BSM CPV at the EW
 → TeV scale could hold the key to explaining the cosmic matter-antimatter asymmetry
- Electroweak baryogenesis (EWBG) connects this CPV to the origin of elementary particle masses through EW symmetry breaking
- The ingredients for EWBG are experimentally accessible through a combination of low-energy symmetry tests, collider searches, and GW probes
- An exciting opportunity exists for inter-frontier synergy in the quest to pursue this quest

Outline

- I. Context
- II. EWBG in a nutshell
- III. EWBG in detail
 - EW phase transition (brief)
 - CPV & EDMs

IV. Outlook

I. Context & Questions

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.66 \pm 0.04) \times 10^{-11}$$

One number → ₩ ₩ ₩ ... **Explanations**

Experiment can help:

- Discover ingredients
- Falsify candidates

Ingredients for Baryogenesis

Andrei Sakharov

- Russian theoretical physicist
- Nobel Peace Prize recipient
- 1921-1989

Ingredients for Baryogenesis

• B violation (sphalerons)

- C & CP violation
- Out-of-equilibrium or
 CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard ModelBSMImage: Standard ModelImage: Standard Model</t

Fermion Masses & Baryon Asymmetry

Thermal History

Fermion Masses & Baryon Asymmetry

This talk

Most directly testable

Energy Scale (GeV)

12

Most directly testable

Energy Scale (GeV)

13

Energy Scale (GeV)

Electroweak Baryogenesis

Was Y_B generated in conjunction with electroweak symmetry-breaking?

II. EWB in a Nutshell

Increasing m_h

SM: 1 st	order	EWPT	end	point
---------------------	-------	------	-----	-------

Lattice	Authors	$M_{\rm h}^C$ (GeV)
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

Cannot occur in the St'd Model: Higgs too heavy

EWSB

20

EW Phase Transition: New Scalars & CPV

IIIA. Electroweak Phase Transition

Conditions for Electroweak Baryogenesis ?

EW Phase Transition: St'd Model

Increasing m_h

Lattice	Authors	$M_{\rm h}^C~({ m GeV})$
4D Isotropic	[76]	80 ± 7
4D Anisotropic	[74]	72.4 ± 1.7
3D Isotropic	[72]	72.3 ± 0.7
3D Isotropic	[70]	72.4 ± 0.9

SM EW: Cross over transition

How does this picture change in presence of new TeV scale physics ? What is the phase diagram ?

Was There an EW Phase Transition?

 How reliably can we compute the thermodynamics ?

n evolve differently as T evolves → ilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

MJRM: 1912.07189

First Order EWPT from BSM Physics

First Order EWPT from BSM Physics

IIIB. CPV: Baryon Asymmetry & EDMs

30

EW Phase Transition: New Scalars & CPV

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

32

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 -31	10 -26

* 95% CL

$$v_{EDM} = -\frac{d\,\vec{S}\cdot(-\vec{E})}{h}$$

T-odd , CP-odd by CPT theorem

 d_n : x < 0.25 mm

C-Y Liu

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁹
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale SensitivityMass Scale SensitivitySinChallengeChallenge ψ φ MMSourceMSourceNSourceNSourceNSourceNSource<
EDMs: New CPV?

System	Limit (e	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	cm) 7.4 x 10 ⁻³⁰	10 - ³³	10 -29
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻²⁸
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Mass Scale Sensitivity

- EDMs arise at > 1 loop
- CPV is flavor non-diagonal
 - CPV is "partially secluded"

EDMs & EWBG: MSSM & Beyond

 $sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$ $M < 500 \text{ GeV} \rightarrow sin\phi_{CP} < 10^{-2}$

Universal gaugino phases $Arg(\mu M_i b^*) =$ $Arg(\mu M_j b^*)$

Cirigliano, R-M, Tulin, Lee '06

Ritz CIPANP 09 + *Cirigliano, R-M, Tulin, Lee ⁶06* 38

15+ years ago...

EDMs & EWBG: MSSM & Beyond

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

EDMs & EWBG: MSSM & Beyond

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c$$

Mass basis (T=0)

$$\frac{m_f}{v}\kappa_\tau(\cos\phi_\tau\bar{\tau}\tau+\sin\phi_\tau\bar{\tau}i\gamma_5\tau)h$$

Guo, Li, Liu, R-M, Shu 1609.09849

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c$$

Mass basis (T=0)

$$CPV h \rightarrow \tau \tau$$

 $\frac{m_f}{v} \kappa_{\tau} (\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_5 \tau) h$

Guo, Li, Liu, R-M, Shu 1609.09849

Flavor basis (high T)

$$\mathscr{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$$

Mass basis (T=0)

$$\frac{CPV h \rightarrow \tau\tau}{\frac{m_f}{v}\kappa_{\tau}(\cos\phi_{\tau}\bar{\tau}\tau + \sin\phi_{\tau}\bar{\tau}i\gamma_{5}\tau)h}$$

Guo, Li, Liu, R-M, Shu 1609.09849

Flavor basis (high T) $\mathcal{L}_{Yukawa}^{Lepton} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$ Mass basis (T=0) $CPV h \to \tau\tau$ $\frac{m_f}{v} \kappa_\tau (\cos \phi_\tau \overline{\tau} \tau + \sin \phi_\tau \overline{\tau} i \gamma_5 \tau) h$

Guo, Li, Liu, R-M, Shu 1609.09849

45

Ge, Li, Pasquini, R-M, Shu 2012.13922

Two-Step EW Baryogenesis

Illustrative Model:

New sector: "Real Triplet" Σ Gauge singlet S

 $H \rightarrow Set of "SM" fields: 2 HDM$

(SUSY: "TNMSSM", Coriano...)

Two CPV Phases:

Triplet phase Singlet phase

Inoue, Ovanesyan, R-M: 1508.05404

Two-Step EW Baryogenesis & EDMs

Two-Step EW Baryogenesis & EDMs

Two cases: (A) $\delta_{S} = 0$ (B) $\delta_{\Sigma} = 0$

Triplet phase

Singlet phase

CPV for EWBG

2HDM CPV : EDMs

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

sin α_b : CPV scalar mixing

d_n x 0.1 d_A(Hg) x 0.1 d_{ThO} x 0.1 d_A(Ra) [10⁻²⁷ e cm] Future: $d_n \ge 0.01$ $d_A(Hg) \ge 0.1$ $d_{ThO} \ge 0.1$ $d_A(Ra)$

50 Inoue, R-M, Zhang: 1403.4257

2HDM CPV : EDMs & LHC

CPV & 2HDM: Type II illustration

 $\lambda_{6,7} = 0$ for simplicity

2HDM CPV & EWBG

2HDM CPV: Source for EWBG?

Dorsch et al, 1611.05874

IV. Outlook

Questions for this Workshop

- What are the most interesting probes of BSM CPV for the LHC and beyond ?
- How do these collider probes complement EDM searches ?
- Which probes provide tests of BSM CPV needed for electroweak baryogenesis and other EW → TeV scale baryogenesis scenarios ?

Key Themes

- The experimental discovery of BSM CPV at the EW
 → TeV scale could hold the key to explaining the cosmic matter-antimatter asymmetry
- Electroweak barysgenesis (EWBG) connects this CPV to the origin of electron artary particle masses through EW symmetry breaking
- The ingredients for EWBG are experimentally accessible through a combination of low-energy symmetry tests, collider searches, and GW probes
- An exciting opportunity exists for inter-frontier synergy in the quest to pursue this quest

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 $H \rightarrow$ Set of "SM" fields, including at least one that breaks EWSB at during second step & persists to T = 0 (e.g., single H, 2HDM...)

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 $H \rightarrow$ Set of "SM" fields, including at least one that breaks EWSB at during second step & persists to T = 0 (e.g., single H, 2HDM...)

What are possibilities for generating CPV asymmetries needed for baryogenesis during the first step ?

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

 New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_j → n_L
- CPV asymmetry generated for subset of φ_j, then transferred to SM sector

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_j → n_L
- CPV asymmetry generated for subset of φ_j, then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j 61

 $\Sigma \rightarrow$ New sector: set of BSM fields ϕ_j , including at least one that breaks EWSB at T > 0 during first step

- New sector contains additional LH fermions that contribute to the B+L anomaly: CPV interactions with φ_i → n_L
- CPV asymmetry generated for subset of φ_j, then transferred to SM sector
- CPV asymmetry generated in SM sector via interactions with the ϕ_j 62

Illustrative Study

CPV asymmetry generated in SM sector via interactions with the ϕ_j

Considerations:

- Renormalizable interactions in scalar sector
- At least two new sector fields get spacetime varying vevs v_{NEW} (x) during step 1, at least one of which is EWSB
- At least two scalar fields mix due to v_{NEW} (x), at least one of which is in SM sector

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

CPV:
$$\theta = Arg(m_{12}^2) = \theta(x)$$

 $m_{12}^2 = a v_1(x) + b v_2(x)$

CPV asymmetry generated in SM sector via interactions with the ϕ_i

- New sector: real triplet (Σ) & real singlet (S)
- SM Sector: Z₂ symmetric 2HDM

EW Singlet: "partially secluded sector"

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

CPV:
$$\theta = Arg(m_{12}^2) = \theta(x)$$

 $m_{12}^2 = a v_{\Sigma}(x) + b v_{S}(x)$

CPV asymmetry generated in SM sector via interactions with the ϕ_i

- New sector: real triplet (Σ) & real singlet (S)
- SM Sector: Z₂ symmetric 2HDM

$$V(H_1, H_2, \Sigma, S)$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{2} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \quad (5)$$

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

CPV:
$$\theta = Arg(m_{12}^2) = \theta(x)$$

 $m_{12}^2 = a v_{\Sigma}(x) + b v_{S}(x)$

CPV asymmetry generated in SM sector via interactions with the ϕ_i

- New sector: real triplet (Σ) & real singlet (S)
- SM Sector: Z₂ symmetric 2HDM

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{4} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

CPV:
$$\theta = Arg(m_{12}^2) = \theta(x)$$

 $m_{12}^2 = a v_{\Sigma}(x) + b v_{S}(x)$

CPV asymmetry generated in SM sector via interactions with the ϕ_i

- New sector: real triplet (Σ) & real singlet (S)
- SM Sector: Z₂ symmetric 2HDM

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma}\right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma}\right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{4} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma}\right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.}\right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

Set to zero for simplicity

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

CPV:
$$\theta = Arg(m_{12}^{2}) = \theta(x)$$

 $m_{12}^{2} = a v_{\Sigma}(x) + b v_{S}(x)$

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{4} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

Set to zero for simplicity

Rephasing invariants

$$\begin{split} \delta_{\Sigma} &= \arg \left[a_{2\Sigma}^* \, v_1 v_2^* \right] \,, \\ \delta_S &= \arg \left[a_{2S}^* \, v_1 v_2^* \right] \,, \\ \delta_{\lambda_5} &= \arg \left[\lambda_5^* \, \left(v_1 v_2^* \right)^2 \right] \end{split}$$

Illustrative Study: Y_B

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

$$CPV: \theta = Arg(m_{12}^{2}) = \theta(x)$$
$$m_{12}^{2} = a v_{\Sigma}(x) + b v_{S}(x)$$

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{4} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

Transport equations $\partial_{\lambda} j_{k}^{\lambda} = -\sum_{A} \Gamma_{A} (\mu_{k} - \mu_{\ell} - \cdots) + S_{k}^{O^{\circ}}$

Particle # changing reactions:

Transfer asymmetry from H to fermions

Illustrative Study: Constraints

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

$$CPV: \theta = Arg(m_{12}^{2}) = \theta(x)$$
$$m_{12}^{2} = a v_{\Sigma}(x) + b v_{S}(x)$$

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\underbrace{\frac{1}{4}}_{a_{2\Sigma}} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

$$\delta_{\Sigma} = \arg \left[a_{2\Sigma}^* v_1 v_2^* \right] ,$$

$$\delta_S = \arg \left[a_{2S}^* v_1 v_2^* \right] ,$$

$$\delta_{\lambda_5} = \arg \left[\lambda_5^* (v_1 v_2^*)^2 \right]$$

Illustrative Study: Constraints

$$\mathbf{M}^2 = \left(\begin{array}{cc} m_{11}^2 & m_{12}^2 \\ m_{12}^{2*} & m_{22}^2 \end{array} \right)$$

$$CPV: \theta = Arg(m_{12}^{2}) = \theta(x)$$
$$m_{12}^{2} = a v_{\Sigma}(x) + b v_{S}(x)$$

$$V(H_1, H_2, \Sigma, S) \qquad CPV$$

$$= -\frac{\mu_{\Sigma}^2}{2} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{b_{4\Sigma}}{4} \left(\vec{\Sigma} \cdot \vec{\Sigma} \right)^2 + \frac{b_{2S}}{2} S^2 + \frac{b_{4S}}{4} S^4$$

$$+ \left[\frac{1}{4} a_{2\Sigma} H_1^{\dagger} H_2 \left(\vec{\Sigma} \cdot \vec{\Sigma} \right) + \frac{1}{2} a_{2S} H_1^{\dagger} H_2 S^2 + \text{h.c.} \right],$$

$$+ a_{1\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S + \frac{1}{2} a_{2\Sigma S} \vec{\Sigma} \cdot \vec{\Sigma} S^2 + V(H_1, H_2). \qquad (5)$$

Set to zero for simplicity
$$\overline{\mathsf{EDMs}}$$

 Σ^+

 h_i

f

 Z, γ

$$\begin{split} \delta_{\Sigma} &= \arg \left[a_{2\Sigma}^* \, v_1 v_2^* \right] \,, \\ \delta_S &= \arg \left[a_{2S}^* \, v_1 v_2^* \right] \,, \\ \delta_{\lambda_5} &= \arg \left[\lambda_5^* \, \left(v_1 v_2^* \right)^2 \right] \end{split}$$

No δ_{S} sensitivity

Illustrative Study: Lessons

- Two-step electroweak baryogenesis is viable
- No fine tuning of parameters necessary (yet)
- CPV from a partially secluded sector can evade EDM constraints: direct CPV probes are sensitive to non-singlet sector
- LHC & beyond may discover the new light states
- Rich variety of scenarios yet to be explored